
Week 5. Big Data Analytics

data.frame manipulation with dplyr

Hyeonsu B. Kang
hyk149@eng.ucsd.edu

April 2016

1 Join with dplyr

In the last lecture we have seen how to efficiently manipulate a single table of data using dplyr’s group by,
filter, and mutate. In today’s lecture, we will learn how to cope with many tables that contribute to an
analysis. (The following content below is adapted from https://goo.gl/T29rlU)

Install the nycflight13 package using

> install.packages("nycflights13")

> library(nycflights13)

This package contains information about all flights that departed from NYC (e.g. EWR, JFK and LGA) in
2013. 336,776 flights in total. To help understand what causes delays, it also includes a number of other useful
datasets:

• weather: hourly meterological data for each airport

• planes: construction information about each plane

• airports: airport names and locations

• airlines: translation between two letter carrier codes and names

There are 3 verbs to remember in working with two tables at a time

• Mutating joins, which add new variables to one table from matching rows in another

• Filtering joins, which filter observations from one table based on whether or not they match an obser-
vation in the other table

• Set operations, which combine the observations in the data sets as if they were set elements

1.1 Mutating joins

Mutating joins allow you to combine variables from multiple tables. First, let us have a look into the flights

and airlines data sets.

> dim(flights)

[1] 336776 16

> dim(airlines)

[1] 16 2

In flights, we have flight information with an abbreviation for carrier, and in airlines we have a mapping
between abbreviations and full names. First, let us create a subset of the flights data set with only year,

month, day, hour, origin, dest, tailnum and carrier variables.

> subdata = flights %>% select(year , month , day , hour , origin , dest , tailnum , carrier)

(if you hit an error here, you probably have not loaded the dplyr package).

1

mailto:hyk149@eng.ucsd.edu
https://goo.gl/T29rlU


1.2 Controlling how the tables are matched

Then, joining subdata with carrier names in airlines with left join() is as follows:

> subdata = flights %>% select(year , month , day , hour , origin , dest , tailnum , carrier)

> head(subdata)

Source: local data frame [6 x 8]

year month day hour origin dest tailnum carrier

(int) (int) (int) (dbl) (chr) (chr) (chr) (chr)

1 2013 1 1 5 EWR IAH N14228 UA

2 2013 1 1 5 LGA IAH N24211 UA

3 2013 1 1 5 JFK MIA N619AA AA

4 2013 1 1 5 JFK BQN N804JB B6

5 2013 1 1 5 LGA ATL N668DN DL

6 2013 1 1 5 EWR ORD N39463 UA

t

> subdata %>% left_join(airlines)

Joining by: "carrier"

Source: local data frame [336 ,776 x 9]

year month day hour origin dest tailnum carrier name

(int) (int) (int) (dbl) (chr) (chr) (chr) (chr) (fctr)

1 2013 1 1 5 EWR IAH N14228 UA United Air Lines Inc.

2 2013 1 1 5 LGA IAH N24211 UA United Air Lines Inc.

3 2013 1 1 5 JFK MIA N619AA AA American Airlines Inc.

4 2013 1 1 5 JFK BQN N804JB B6 JetBlue Airways

5 2013 1 1 5 LGA ATL N668DN DL Delta Air Lines Inc.

6 2013 1 1 5 EWR ORD N39463 UA United Air Lines Inc.

7 2013 1 1 5 EWR FLL N516JB B6 JetBlue Airways

8 2013 1 1 5 LGA IAD N829AS EV ExpressJet Airlines Inc.

9 2013 1 1 5 JFK MCO N593JB B6 JetBlue Airways

10 2013 1 1 5 LGA ORD N3ALAA AA American Airlines Inc.

.. ... ... ... ... ... ... ... ... ...

Each mutating join takes an argument by that controls which variables are used to match observations in the
two tables. There are a few ways to specify it, as illustrated below with various tables from nycflights13:

• NULL, the default (natural join): dplyr will use all variables that appear in both tables. For example,
the flights and weather tables match on their common variables: year, month, day, hour and origin.

> subdata %>% left_join(weather)

Joining by: c("year", "month", "day", "hour", "origin")

Source: local data frame [336 ,776 x 17]

year month day hour origin dest tailnum carrier temp dewp humid wind_dir

(dbl) (dbl) (int) (dbl) (chr) (chr) (chr) (chr) (dbl) (dbl) (dbl) (dbl)

1 2013 1 1 5 EWR IAH N14228 UA NA NA NA NA

2 2013 1 1 5 LGA IAH N24211 UA NA NA NA NA

3 2013 1 1 5 JFK MIA N619AA AA NA NA NA NA

4 2013 1 1 5 JFK BQN N804JB B6 NA NA NA NA

5 2013 1 1 5 LGA ATL N668DN DL NA NA NA NA

6 2013 1 1 5 EWR ORD N39463 UA NA NA NA NA

7 2013 1 1 5 EWR FLL N516JB B6 NA NA NA NA

8 2013 1 1 5 LGA IAD N829AS EV NA NA NA NA

9 2013 1 1 5 JFK MCO N593JB B6 NA NA NA NA

10 2013 1 1 5 LGA ORD N3ALAA AA NA NA NA NA

.. ... ... ... ... ... ... ... ... ... ... ... ...

Variables not shown: wind_speed (dbl), wind_gust (dbl), precip (dbl), pressure (dbl),

visib (dbl)

• A character vector x, with by = "x". Like a natural join, but uses only some of the common variables.
For example, flights and planes have year columns, but they have different meanings so we only want
to join by tailnum.

> subdata %>% left_join(planes , by = "tailnum")

Source: local data frame [336 ,776 x 16]

2



year.x month day hour origin dest tailnum carrier year.y type

(int) (int) (int) (dbl) (chr) (chr) (chr) (chr) (int) (chr)

1 2013 1 1 5 EWR IAH N14228 UA 1999 Fixed wing multi engine

2 2013 1 1 5 LGA IAH N24211 UA 1998 Fixed wing multi engine

3 2013 1 1 5 JFK MIA N619AA AA 1990 Fixed wing multi engine

4 2013 1 1 5 JFK BQN N804JB B6 2012 Fixed wing multi engine

5 2013 1 1 5 LGA ATL N668DN DL 1991 Fixed wing multi engine

6 2013 1 1 5 EWR ORD N39463 UA 2012 Fixed wing multi engine

7 2013 1 1 5 EWR FLL N516JB B6 2000 Fixed wing multi engine

8 2013 1 1 5 LGA IAD N829AS EV 1998 Fixed wing multi engine

9 2013 1 1 5 JFK MCO N593JB B6 2004 Fixed wing multi engine

10 2013 1 1 5 LGA ORD N3ALAA AA NA NA

.. ... ... ... ... ... ... ... ... ... ...

Variables not shown: manufacturer (chr), model (chr), engines (int), seats (int),

speed (int), engine (chr)

Note that the year columns in the output are disambiguated with suffix .x and .y.

• A named character, i.e. by = c("x" = "a"). This will match variable x in the first table to variable a in
the second. For example, each flight has an origin and destination airport, so we need to specify which
one we want to join to:

> subdata = flights %>% select(year , month , day , hour , origin , dest , tailnum , carrier)

> subdata %>% left_join(airports , c("dest" = "faa"))

Source: local data frame [336 ,776 x 14]

year month day hour origin dest tailnum carrier name lat

(int) (int) (int) (dbl) (chr) (chr) (chr) (chr) (chr) (dbl)

1 2013 1 1 5 EWR IAH N14228 UA ... 29.98443

2 2013 1 1 5 LGA IAH N24211 UA ... 29.98443

3 2013 1 1 5 JFK MIA N619AA AA ... 25.79325

4 2013 1 1 5 JFK BQN N804JB B6 ... NA

5 2013 1 1 5 LGA ATL N668DN DL ... 33.63672

6 2013 1 1 5 EWR ORD N39463 UA ... 41.97860

7 2013 1 1 5 EWR FLL N516JB B6 ... 26.07258

8 2013 1 1 5 LGA IAD N829AS EV ... 38.94453

9 2013 1 1 5 JFK MCO N593JB B6 ... 28.42939

10 2013 1 1 5 LGA ORD N3ALAA AA ... 41.97860

.. ... ... ... ... ... ... ... ... ... ...

Variables not shown: lon (dbl), alt (int), tz (dbl), dst (chr)

1.3 Types of join

So far, we have used the left join() operation only. In fact, there are four types of mutating join, which differ
in their behavior when a match is not found. We’ll illustrate each with a simple example below.

> (df1 = data_frame(x = c(1,2), y = 2:1))

Source: local data frame [2 x 2]

x y

(dbl) (int)

1 1 2

2 2 1

> (df2 = data_frame(x = c(1,3), a = 10, b = "a"))

Source: local data frame [2 x 3]

x a b

(dbl) (dbl) (chr)

1 1 10 a

2 3 10 a

(1) inner join(x, y) only includes observations that match in both x and y

3



> df1 %>% inner_join(df2)

Joining by: "x"

Source: local data frame [1 x 4]

x y a b

(dbl) (int) (dbl) (chr)

1 1 2 10 a

(2) left join(x, y) includes all observations in x, regardless of whether they match or not. This is the most
commonly used join because it ensures that you do not lose observations from your primary table.

> df1 %>% left_join(df2)

Joining by: "x"

Source: local data frame [2 x 4]

x y a b

(dbl) (int) (dbl) (chr)

1 1 2 10 a

2 2 1 NA NA

(3) right join(x, y) includes all observations in y. It is equivalent to left join(y, x), but the columns
will be ordered differently.

> df1 %>% right_join(df2)

Joining by: "x"

Source: local data frame [2 x 4]

x y a b

(dbl) (int) (dbl) (chr)

1 1 2 10 a

2 3 NA 10 a

> df2 %>% left_join(df1)

Joining by: "x"

Source: local data frame [2 x 4]

x a b y

(dbl) (dbl) (chr) (int)

1 1 10 a 2

2 3 10 a NA

(4) full join() includes all observations from x and y.

> df1 %>% full_join(df2)

Joining by: "x"

Source: local data frame [3 x 4]

x y a b

(dbl) (int) (dbl) (chr)

1 1 2 10 a

2 2 1 NA NA

3 3 NA 10 a

The left, right and full joins are collectively know as outer joins. When a row does not match in an outer join,
the new variables are filled in with missing values.

4



1.4 Observations

While mutating joins are primarily used to add new variables, they can also generate new observations. If
a match is not unique, a join will add all possible combinations (the Cartesian product) of the matching
observations:

> (df1 = data_frame(x = c(1,1,2), y = 1:3))

Source: local data frame [3 x 2]

x y

(dbl) (int)

1 1 1

2 1 2

3 2 3

> (df2 = data_frame(x = c(1,1,2), z = c("a", "b", "a")))

Source: local data frame [3 x 2]

x z

(dbl) (chr)

1 1 a

2 1 b

3 2 a

> df1 %>% left_join(df2)

Joining by: "x"

Source: local data frame [5 x 3]

x y z

(dbl) (int) (chr)

1 1 1 a

2 1 1 b

3 1 2 a

4 1 2 b

5 2 3 a

1.5 Filtering joins

Filtering joins match observations in the same way as mutating joins, but affect the observations, not the
variables. There are two types in filtering joins:

• semi join(x, y) keeps all observations in x that have a match in y

• anti join(x, y) drops all observations in x that have a match in y

These are most useful for diagnosing join mismatches. For example, there are many flights in the nycflights13
dataset that do not have a matching tail number in the planes table:

> flights %>%

+ anti_join(planes , by = "tailnum") %>%

+ count(tailnum , sort = TRUE)

Source: local data frame [722 x 2]

tailnum n

(chr) (int)

1 2512

2 N725MQ 575

3 N722MQ 513

4 N723MQ 507

5 N713MQ 483

6 N735MQ 396

7 N0EGMQ 371

8 N534MQ 364

9 N542MQ 363

10 N531MQ 349

.. ... ...

5



> flights %>%

+ semi_join(planes , by = "tailnum") %>%

+ count(tailnum , sort = TRUE)

Source: local data frame [3 ,322 x 2]

tailnum n

(chr) (int)

1 N711MQ 486

2 N258JB 427

3 N298JB 407

4 N353JB 404

5 N351JB 402

6 N328AA 393

7 N228JB 388

8 N338AA 388

9 N327AA 387

10 N335AA 385

.. ... ...

1.6 Set operations

The final type of two-table verb is set operations. These expect the x and y inputs to have the same variables,
and treat the observations like sets.

• intersect(x, y) returns only observations in both x and y

• union(x, y) returns unique observations in x and y

• setdiff(x, y) returns observations in x, but not in y

Provided this simple data:

> (df1 = data_frame(x = 1:2, y = c(1L, 1L)))

Source: local data frame [2 x 2]

x y

(int) (int)

1 1 1

2 2 1

> (df2 = data_frame(x = 1:2, y = 1:2))

Source: local data frame [2 x 2]

x y

(int) (int)

1 1 1

2 2 2

the four possible operations are

> intersect(df1 , df2)

Source: local data frame [1 x 2]

x y

(int) (int)

1 1 1

> union(df1 , df2)

Source: local data frame [3 x 2]

x y

(int) (int)

1 1 1

2 2 1

3 2 2

> setdiff(df1 , df2)

Source: local data frame [1 x 2]

6



x y

(int) (int)

1 2 1

> setdiff(df2 , df1)

Source: local data frame [1 x 2]

x y

(int) (int)

1 2 2

NOTE: there are straightforward SQL equivalent operations:

R SQL

inner_join() SELECT * FROM x JOIN y ON x.a = y.a

left_join() SELECT * FROM x LEFT JOIN y ON x.a = y.a

right_join() SELECT * FROM x RIGHT JOIN y ON x.a = y.a

full_join() SELECT * FROM x FULL JOIN y ON x.a = y.a

semi_join() SELECT * FROM x WHERE EXISTS (SELECT 1 FROM y WHERE x.a = y.a)

anti_join() SELECT * FROM x WHERE NOT EXISTS (SELECT 1 FROM y WHERE x.a = y.a)

intersect(x, y) SELECT * FROM x INTERSECT SELECT * FROM y

union(x, y) SELECT * FROM x UNION SELECT * FROM y

setdiff(x, y) SELECT * FROM x EXCEPT SELECT * FROM y

2 Practice

Can you join the flights dataset with the weather dataset and run regressions between dep delay in flights

and variables in weather that you think are critical for the departure delay (e.g. temp, wind dir, humid,
wind gust, etc.) f the flight?

7


	Join with dplyr
	Mutating joins
	Controlling how the tables are matched
	Types of join
	Observations
	Filtering joins
	Set operations

	Practice

