
Week 7. Big Data Analytics

Visualization with ggplot2

Hyeonsu B. Kang
hyk149@eng.ucsd.edu

May 2016

1 The Layered Grammer of ggplot2

“ggplot2 is a plotting system for R, based on the grammar of graphics, which tries to take the good parts
of base and lattice graphics and none of the bad parts. It takes care of many of the fiddly details that make
plotting a hassle (like drawing legends) as well as providing a powerful model of graphics that makes it easy to
produce complex multi-layered graphics.” http://ggplot2.org/

Many people love ggplot2. It makes graphics easier, provides a set of grammar that facilitates research into
new types of display, and it consists of orthogonal components and minimal special cases.

In this session, we will recreate some ggplot2 examples. More could be found at http://docs.ggplot2.

org/current/.

1.1 Line plots with ggplot2

We can plot horizontal, vertical, and slanted lines by specifying slope and intercept using ggplot2. The syntax:

geom_hline(mapping = NULL , data = NULL , ..., \

yintercept , na.rm = FALSE , show.legend = NA)

geom_vline(mapping = NULL , data = NULL , ..., \

xintercept , na.rm = FALSE , show.legend = NA)

geom_abline(mapping = NULL , data = NULL , ..., \

slope , intercept , na.rm = FALSE , show.legend = NA)

Let’s use a default data set in R called mtcars.

> head(mtcars)

mpg cyl disp hp drat wt qsec vs am gear carb

Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4

Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4

Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1

Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1

Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2

Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1

Now creating a dot plot of wt and mpg is very simple:

> p = ggplot(mtcars , aes(wt, mpg)) + geom_point ()

> p

It is important to “feel” the layered grammar of visualization here. First, we have created a plot data plane
using ggplot() and then added the dot-plot visualization specification using geom point(). The + operator
serves as an indicator that we are “adding” more visualization specifications on top of the data plane.

Adding one or more lines to the plot is also straightforward, we can call functions such as geom vline(),

geom hline() or geom abline(). Please note that we have saved the original dot plot in p, so that we can
reuse it in the layered grammar manner.

> # adding a fixed line using geom_line

> p + geom_vline(xintercept = 5)

> # adding multiple fixed lines

> p + geom_vline(xintercept = 1:5)

> p + geom_hline(yintercept = c(15, 20, 25))

> p + geom_abline(intercept = 20)

1

mailto:hyk149@eng.ucsd.edu
http://ggplot2.org/
http://docs.ggplot2.org/current/
http://docs.ggplot2.org/current/

How to fit a linear line to the data displayed? First, we can think of using geom abline(). As in its syntax
shown in the beginning of this tutorial, we can specify the slope and intercept of the line – thus we will first
need to calculate the linear line’s slope and intercept.

> # calculate slope and intercept of a line of the best fit

> coef(lm(mpg ~ wt, data = mtcars))

(Intercept) wt

37.285126 -5.344472

> p + geom_abline(intercept= 37.285 , slope = -5.344)

In fact, we do not have to calculate the intercept and the slope beforehand for the visualization purpose, as
fitting a linear line can be done using the following command:

> p + geom_smooth(method = "lm", se = FALSE)

Figure 1: The fitted linear line

How about showing different lines from different facets of the data, thus creating small multiples of it? For
example, in mtcars, the data points can be classified into three different groups depending on their number of
cylinders. Can we separate them out and plot? Using facet wrap() and specifying aes() can do exactly that.

> p = ggplot(mtcars , aes(mpg , wt)) + geom_point () + facet_wrap(~ cyl)

> cyl4 = mtcars$cyl == 4

> cyl6 = mtcars$cyl == 6

> cyl8 = mtcars$cyl == 8

> meanWT4 = mean(mtcars[cyl4 ,]$wt)

> meanWT6 = mean(mtcars[cyl6 ,]$wt)

> meanWT8 = mean(mtcars[cyl8 ,]$wt)

> meanWT = data.frame(cyl = c(4,6,8), wt = c(meanWT4 , meanWT6 , meanWT8))

> p + geom_hline(aes(yintercept = wt), meanWT)

Figure 2: Dot plot separated based on the number of cylinders in mtcars

2

Adding some shades and making the plot more visually explicit is also possible by specifying the color option
in aes():

> p = ggplot(mtcars , aes(mpg , wt, color = wt)) + geom_point () + facet_wrap(~cyl)

> p + geom_hline(aes(yintercept = wt, color = wt), meanWT)

Figure 3: Colored plot

1.2 Data ellipses with ggplot2

The method for calculating ellipses can be found from http://socserv.socsci.mcmaster.ca/jfox/Books/

Companion/. Using another default data set called faithful, we can manually specify some bounding ellipses
such that visual groupings of data points are explicit. The basic syntax of stat ellipse() is as follows:

> head(faithful)

eruptions waiting

1 3.600 79

2 1.800 54

3 3.333 74

4 2.283 62

5 4.533 85

6 2.883 55

stat_ellipse(mapping = NULL , data = NULL , geom = "path", \

position = "identity", ..., type = "t", level = 0.95, \

segments = 51, na.rm = FALSE , show.legend = NA, inherit.aes = TRUE)

> ggplot(faithful , aes(waiting , eruptions)) + geom_point () + stat_ellipse ()

Figure 4: Dot plot with a default ellipse

3

http://socserv.socsci.mcmaster.ca/jfox/Books/Companion/
http://socserv.socsci.mcmaster.ca/jfox/Books/Companion/

Or sub-grouping into smaller sets of points is also possible:

> ggplot(faithful , aes(waiting , eruptions , color = eruptions > 3)) +

+ geom_point() + stat_ellipse ()

Figure 5: Dot plot with small ellipses

Finally, specifying the type of ellipses is also possible (for more details about this specification, please visit
http://socserv.socsci.mcmaster.ca/jfox/Books/Companion/). Here, we will assume that the default data
set follows a multivariate t-distribution (in solid lines) and add new ellipses that indicate multivariate normal
distribution of the data.

> ggplot(faithful , aes(waiting , eruptions , color = eruptions > 3)) +

+ geom_point() + stat_ellipse(type = "norm", linetype = 2) + stat_ellipse(type = "t")

Figure 6: Dot plot with different multivariate ellipses

1.3 Vertical intervals: lines, crossbars and error bars

Showing various vertical lines and error bars can be easily done with ggplot2 as well. The basic syntax is as
follows:

geom_crossbar(mapping = NULL , data = NULL , stat = "identity", position = "identity", \

..., fatten = 2.5, na.rm = FALSE , show.legend = NA, inherit.aes = TRUE)

geom_errorbar(mapping = NULL , data = NULL , stat = "identity", position = "identity", \

..., na.rm = FALSE , show.legend = NA, inherit.aes = TRUE)

geom_linerange(mapping = NULL , data = NULL , stat = "identity", position = "identity", \

..., na.rm = FALSE , show.legend = NA, inherit.aes = TRUE)

4

http://socserv.socsci.mcmaster.ca/jfox/Books/Companion/

geom_pointrange(mapping = NULL , data = NULL , stat = "identity", position = "identity", \

..., fatten = 4, na.rm = FALSE , show.legend = NA, inherit.aes = TRUE)

In this example, we use a simple data frame for the purpose of visualization. Download it from https:

//bigdata452.slack.com/files/hyk149/F17QVMGM8/data.csv and locate it in the current project folder.
Drawing a vertical line plot using resp and trt of the data set is as simple as

> df

trt resp group upper lower

1 1 1 1 1.1 0.8

2 1 5 2 5.3 4.6

3 2 3 1 3.3 2.4

4 2 4 2 4.2 3.6

> p = ggplot(df, aes(trt , resp , color = group))

> p + geom_linerange(aes(ymin = lower , ymax = upper))

Adding observation points is

> p + geom_pointrange(aes(ymin = lower , ymax = upper))

Adding cross bars or error bars is also simple:

> p + geom_crossbar(aes(ymin = lower , ymax = upper), width = 0.2)

> p + geom_errorbar(aes(ymin = lower , ymax = upper), width = 0.2)

Cross line connections can also be made using

> p + geom_line(aes(group = group)) +

+ geom_errorbar(aes(ymin = lower , ymax = upper), width = 0.2)

> p = ggplot(df, aes(trt , resp , fill = group))

> dodge = position_dodge(width = 0.9)

> p + geom_bar(position = dodge , stat = "identity") +

+ geom_errorbar(aes(ymin = lower , ymax = upper), position = dodge , width = 0.25)

Figure 7: Error bars with bar chart

5

https://bigdata452.slack.com/files/hyk149/F17QVMGM8/data.csv
https://bigdata452.slack.com/files/hyk149/F17QVMGM8/data.csv

	The Layered Grammer of ggplot2
	Line plots with ggplot2
	Data ellipses with ggplot2
	Vertical intervals: lines, crossbars and error bars

