
Week 8. Big Data Analytics

Visualization with plotly for R

Hyeonsu B. Kang
hyk149@eng.ucsd.edu

May 2016

1 Adding interactivity to graphs

Plotly is a collaboration platform for modern data science. It lets you share a fully web-based dashboards
with your colleagues and create web-browser rendered interactive plots. In this session, we will go over some
of the features in plotly such as overlaying graphs, adding embedded interactivity and rendering graphs on a
web-browser with Shiny. For more information about plotly, please visit https://plot.ly/.

1.1 Embedded interactivity of graphs

To create a plotly visualization, we start with plot ly(). If we use a default data set called economics and
plotted the unemploy

pop value with plot ly() it automatically embeds interactivity within the graph.

> install.packages("plotly") # if you haven ’t installed the package

> library(plotly)

> p = plot_ly(economics , x = date , y = unemploy / pop)

> p

Figure 1: Graph with embedded interactivity and add trace() for composing multi-plot graphs

A plotly visualization is composed of one (or more) trace(s), and every trace has a type (the default type is
‘scatter’). The arguments or properties that a trace will respect (documented here) depend on its type. A
scatter trace respects mode, which can be any combination of “lines”, “markers”, “text” joined with a “+”.

> plot_ly(economics , x = date , y = unemploy / pop , type = "scatter", mode = "markers")

> plot_ly(economics , x = date , y = unemploy / pop , type = "scatter", mode = "markers+lines")

1

mailto:hyk149@eng.ucsd.edu
https://plot.ly/

You can manually add a trace to an existing plot with add trace(). In that case, you’ll want to either name

your traces, or hide the legend by setting showlegend = FALSE. Let us use a statistics function loess() to fit
a polynomial surface (Fig. 2).

> m <- loess(unemploy / pop ~ as.numeric(date), data = economics)

> p <- plot_ly(economics , x = date , y = unemploy / pop , name = "raw")

> p <- add_trace(p, x = date , y = fitted(m), name = "loess")

> p

Figure 2: Graph with a fitted polynomial surface (line)

Plotly was designed with a pipeable interface in mind, so you can also use the %>% operator to modify your
plots:

> p <- economics %>%

+ plot_ly(x = date , y = unemploy / pop) %>%

+ add_trace(x = date , y = fitted(m)) %>%

+ layout(showlegend = F)

> p

Furthermore, plot ly(), add trace(), and layout(), all accept a data frame as their first argument and
output a data frame. As a result, we can inter-weave data manipulations and visual mappings in a single
pipeline.

> p <- economics %>%

+ transform(rate = unemploy / pop) %>%

+ plot_ly(x = date , y = rate) %>%

+ subset(rate == max(rate)) %>%

+ layout(

+ showlegend = F,

+ annotations = list(x = date , y = rate , text = "Peak", showarrow = T)

+)

> p

1.2 Overlaying graphs using histograms

Basic histograms in plotly is pretty simple by assigning the type of the graph in plot ly()

> data = rnorm (50)

> plot_ly(x = data , type = "histogram")

2

Figure 3: Default histogram

As before, this histogram comes with interactivity, and as you hover your mouse pointer over one of the bars
in the graph, it shows both the x-axis value and the count of the corresponding bar. To render two histograms
simultaneously, you can use the add trace() function as followS:

> data1 = rnorm (500)

> data2 = rnorm (500) + 1

> plot_ly(x = data1 , type = "histogram") %>%

+ add_trace(x = data2 , type = "histogram")

Figure 4: Non-overlayed histogram

However, including an overlay function can give you a different outlook of the graph as follows

> plot_ly(x = data1 , opacity = 0.6, type = "histogram") %>%

+ add_trace(x = data2 , opacity = 0.6, type = "histogram") %>%

+ layout(barmode = "overlay")

3

Figure 5: Overlayed histogram

1.3 Scatter plots

Creating a scatter plot needs only specification of the mode argument in the plot ly() function to “markers”.
In addition, specifying the marker color can be done by specifying the marker argument

> data <- read.csv("https://goo.gl/jZLWh7")

> data <- data[order(data$Men),]

> p <- plot_ly(data , x = Men , y = School , name = "Men",

+ mode = "markers", marker = list(color = "blue")) %>%

+ layout(

+ title = "Male earnings",

+ xaxis = list(title = "Annual Salary (in thousands)"),

+ margin = list(l = 100),

+ markermode = "overlay"

+)

> p

Overlaying the women’s earnings data in this plot can be done with add trace()

> p <- plot_ly(data , x = Men , y = School , name = "Men",

+ mode = "markers", marker = list(color = "blue")) %>%

+ add_trace(x = Women , y = School , name = "Women",

+ mode = "markers", marker = list(color = "pink")) %>%

+ layout(

+ title = "Gender earnings disparity",

+ xaxis = list(title = "Annual Salary (in thousands)"),

+ margin = list(l = 100),

+ markermode = "overlay"

+)

> p

4

Figure 6: Scatter plot of gender earnings disparity in the decreasing order of men’s earnings

The same task can be done differently by modifying the underline structure of the data set. Using the tidyr’s
gather() function, for example, we can gather the separate Men and Women columns under a new Sex column.
Then, plotting these can be done by assigning the color argument in the plot ly() function:

> library(tidyr)

> data <- read.csv("https://goo.gl/jZLWh7")

> data <- data[order(data$Men),]

key , value and columns to be gathered under the key column

> gather(data , Sex , value , Women , Men) %>%

+ plot_ly(x = value , y = School , mode = "markers",

+ color = Sex , colors = c("pink", "blue")) %>%

+ layout(

+ title = "Gender earnings disparity",

+ xaxis = list(title = "Annual Salary (in thousands)"),

+ margin = list(l = 100)

+)

Moreover, adding another layer of graph is also possible. Suppose, for example, that we would like to indicate
the gap between genders more explicitly. Adding a line graph on top of it is partly overlaying graphs, and thus
we can use add trace() as follows:

> gather(data , Sex , value , Women , Men) %>%

+ plot_ly(x = value , y = School , mode = "markers",

+ color = Sex , colors = c("pink", "blue")) %>%

+ add_trace(x = value , y = School , mode = "lines",

+ group = School , showlegend = F, line = list(color = "gray")) %>%

+ layout(

+ title = "Gender earnings disparity",

+ xaxis = list(title = "Annual Salary (in thousands)"),

+ margin = list(l = 100)

+)

5

Figure 7: Scatter plot of gender earnings disparity in the decreasing order of men’s earnings

Or how about ordering by the size of the earning gap?

> data <- data[order(data$gap),]

> gather(data , Sex , value , Women , Men) %>%

+ plot_ly(x = value , y = School , mode = "markers",

+ color = Sex , colors = c("pink", "blue")) %>%

+ add_trace(x = value , y = School , mode = "lines",

+ group = School , showlegend = F, line = list(color = "gray")) %>%

+ layout(

+ title = "Gender earnings disparity",

+ xaxis = list(title = "Annual Salary (in thousands)"),

+ margin = list(l = 100)

+)

Figure 8: Scatter plot of gender earnings disparity in the decreasing order of earnings gaps

1.4 Adding UI control components with plotly

Please download the stock visualization code from https://goo.gl/lkBbnM. Adding UI control components
for more complete interactivity, such as buttons or slider bars (and many more that were not included here)
can be done by specifying the corresponding arguments in layout(). Here, the buttons directly manipulate the
size of a step on the x axis and thus different options are specified in the list in the buttons argument inside of
rangeselector. Creating a small component view of a range slider can be done by specifying the rangeslider

inside of the xaxis argument.

Listing 1: Microsoft and Apple’s stock price visualization using R

6

https://goo.gl/lkBbnM

library(plotly)

library(quantmod)

Download some data

getSymbols(Symbols = c("AAPL", "MSFT"))

ds <- data.frame(Date = index(AAPL), AAPL[,6], MSFT [,6])

Graph

plot_ly(ds, x = Date , y = AAPL.Adjusted , mode = "lines + markers", name = "Apple") %>%

add_trace(x = Date , y = MSFT.Adjusted , name = "Microsoft") %>%

layout(

title = "Stock Prices",

xaxis = list(

rangeselector = list(

buttons = list(

list(

count = 3,

label = "3 mo",

step = "month",

stepmode = "backward"),

list(

count = 6,

label = "6 mo",

step = "month",

stepmode = "backward"),

list(

count = 1,

label = "1 yr",

step = "year",

stepmode = "backward"),

list(

count = 1,

label = "YTD",

step = "year",

stepmode = "todate"),

list(step = "all")

)

),

rangeslider = list(type = "date")

),

yaxis = list(title = "Price")

)

Figure 9: Microsoft and Apple’s stock price visualization

7

1.5 Rendering interactive graphs in a web browser

Using plotly with shiny lets you render your interactive graphs on a web browser as well as publish them to
the internet. Although we will not cover how to publish the graphics to the internet in this session, let us see
how to put your graphs on a web browser. First, we need to install another R package called shiny and then
have two R scripts called ui.R and server.R. You can download the scripts from https://goo.gl/HACyvo

(ui.R) and https://goo.gl/3gsND6 (server.R). You can manually save the files from the given URLs and
locate them in your project folder, or you can use the following lines to do so:

> install.packages("shiny")

> library(shiny)

> download.file("https://goo.gl/HACyvo", "ui.R")

> download.file("https://goo.gl/3gsND6", "ui.R")

Once you have them saved in the project folder, open one of them in RStudio, and click the “Run App” button.
A new window will pop up and if you click the “Open in Browser” button on the new window, the graphics will
be transferred to your default web browser.

Figure 10: Plotly with Shiny, rendering the graph on a web browser

8

https://goo.gl/HACyvo

	Adding interactivity to graphs
	Embedded interactivity of graphs
	Overlaying graphs using histograms
	Scatter plots
	Adding UI control components with plotly
	Rendering interactive graphs in a web browser

