Week 4. Big Data Analytics - data.frame manipulation with dplyr

Hyeonsu B. Kang
hyk149Qeng.ucsd.edu

April 2016

1 Dplyr

In the last lecture we have seen how to index an individual cell in a data frame, extract a vector of values from
a column of a data frame, and subset a data frame using the age-weight-height data set. Today, we will learn
how to use a package (dplyr) to efficiently manipulate data frames.

Download the data file from https://goo.gl/pgMbKj|and place it in the working directory of your R project.
Loading a csv file is pretty simple, you can use the built-in read function of R.

> getwd() # find your working directory

place the data file in the directory and
> data = read.csv("")

> data

NOTE: You can set the working directory using setwd(<new path>)

1.1 Sanity Check

Let’s first see how the data set is structured:

> nrow(data)

[1]1 1704

> ncol(data)

[1] 6

> colnames (data)

[1] "country" "year" "pop" "continent" "lifeExp"
[6] "gdpPercap"

There are 1,704 observations and 6 variables. A reasonable check might be to see whether observations have
correct years, bigger than 0 population, life expectancy and GDP per capita.

> sum(data$year > 2016 | data$pop <= 0 | data$lifeExp <= 0 | data$gdpPercap <= 0)
[1] o

Good. The data does not seem to have invalid observations. Now, installing the dplyr package is possible as
follows:

> install.packages ("dplyr")
> library("dplyr")

1.2 group_by() and summarize()

Let us first generate some simple statistics. How can we compute yearly mean GDP per capita of different
countries? If we were to use the elementary data frame manipulation operations, we would do something like
below using logical indexing;:

> unique (data$year)
[1] 1952 1957 1962 1967 1972 1977 1982 1987 1992 1997 2002 2007

Yi1952=data$year == 1952
Y1957=data$year == 1957
Y1962=data$year == 1962

GDP1952=mean (data[Y1952,] $gdpPercap)
GDP1952

>
>
>
>
>
>
[1] 3725.276

mailto:hyk149@eng.ucsd.edu
https://goo.gl/pgMbKj

| data

5l | o Filter
country year pop continent lifeExp gdpPercap

1 Afghanistan 1952 8425333 Asia 28.801 779.4453 ~

2 Afghanistan 1957 9240034 Asia 30.332 320.8530

3 Afghaniztan 1962 10267083 Asia 31.997 3531007

4 Afghanistan 1967 11537966 Asia 34.020 836.1971

5 Afghaniztan 1972 13079460 Asia 36.088 7399811

6 Afghanistan 1977 14880372 Asia 38.438 786.1134

7 Afghaniztan 1982 12881818 Asia 30.854 973.0114

& Afghanistan 1987 13867957 Asia 40.822 §52.3858

9 Afghaniztan 1992 16317921 Asia 41.674 G49.3414
10 Afghanistan 1997 22227415 Asia 41.763 G35.3414
11 Afghanistan 2002 25268405 Asia 42129 726.7341
12 Afghanistan 2007 31889923 Asia 43.828 9474 5803
13 Albania 1952 1282697 Europe 55.230 1601.0561
14 Albania 1957 1476505 Europe 50.280 194225842
15 Albania 1962 1728137 Europe 54.820 2312.8890
16 Albania 1967 1934060 Europe 66.220 2760.19649
17 Albania 1972 2203554 Europe §7.680 33134222
18 Albania 1977 2509045 Europe 68.930 3533.0038
19 Albania 1982 27830097 Europe 70.420 3G30.8807 b

Showing 1 to 13 of 1,704 entries

Figure 1: Gapminder Data

As you can see, there are mainly two steps: (1) make individual variables for each of the observation year, and
(2) generate statistics for each of the variables. Of course, you would have to find the unique values of the year
variable beforehand. Since the structure of computation is repetitive each year, one might make a module that
generates a new variable for each of the unique year numbers and then stores the statistics into it and reuse it.

Dplyr makes the matter even simpler, the repetitive procedures are simply done by calling the group_by
function:

GDPbyYear = data %>%
group_by (year) %>%
summarize (MeanGDP=mean (gdpPercap))
GDPbyYear
ource: local data frame [12 x 2]

wn v + + Vv

year MeanGDP
(int) (dbl)

1 1952 3725.276
2 1957 4299.408
3 1962 4725.812
4 1967 5483.653
5 1972 6770.083
6 1977 7313.166
7 1982 7518.902
8 1987 7900.920
9 1992 8158.609

10 1997 9090.175
11 2002 9917.848
12 2007 11680.072

There is a new notation to become familiar with: %>%. This dplyr pipeline operator passes object from the left
hand side as first argument (or . argument) of the function on right hand side. For example,

x %>% £(y) is the same as f(x, y)
y %>% £(x, ., z) is the same as f(x, y, z)

The group_by operation by itself simply outputs the grouped data frame. Since the number of variables nor
observations changes, it is a little confusing whether or not the grouping operation is performed. This can be
verified by looking at the data frames’ internal representation using str():

> groupedData=data%>%group_by(year)

> str(groupedData)

Classes ‘grouped_df’, ‘tbl_df’, ‘tbl’ and ‘data.frame’: 1704 obs. of
6 variables:

> str(data)

‘data.frame’: 1704 obs. of 6 variables:

So the summarize() function we used before was, in fact, operated over these internal groups formed in
the data frame after group_by (). Grouping by multiple variables is also possible. For example, we can group
the GDP per capita variable with respect of continent and year. Note that the order of grouping affects the
representation of the resulting data frame:

> GDPByContiByYear = data %>%

+ group_by(continent, year) %>/

+ summarize (meanGDP = mean (gdpPercap))
> GDPByContiByYear

Source: local data frame [60 x 3]

Groups: continent [7]

continent year meanGDP
(fctr) (int) (dbl)

1 Africa 1952 1252.572

2 Africa 1957 1385.236

3 Africa 1962 1598.079

4 Africa 1967 2050.364

5 Africa 1972 2339.616

6 Africa 1977 2585.939

7 Africa 1982 2481.593

8 Africa 1987 2282.669

9 Africa 1992 2281.810

10 Africa 1997 2378.760

> GDPByYearByConti = data %>%

+ group_by(year, continent) %>%
+ summarize (meanGDP = mean (gdpPercap))

> GDPByYearByConti
Source: local data frame [60 x 3]
Groups: year [7]

year continent meanGDP

(int) (fctr) (dbl)
1 1952 Africa 1252.572
2 1952 Americas 4079.063
3 1952 Asia 5195.484
4 1952 Europe 5661.057
5 1952 Oceania 10298.086
6 1957 Africa 1385.236
7 1957 Americas 4616.044
8 1957 Asia 5787.733
9 1957 Europe 6963.013
10 1957 Oceania 11598.522

1.3 filter()

What if we wanted to compare different continents’” GDP per capita in year 20027

> Y2002GDPByConti = GDPByContiByYear ¥%>%
+ filter (year == 2002)

> Y2002GDPByConti

Source: local data frame [5 x 3]

Groups: continent [5]

continent year meanGDP
(fctr) (int) (dbl)
1 Africa 2002 2599.385

2
3
4
5

Americas
Asia
Europe
Oceania

We can use the filter () operation.

2002
2002
2002
2002

This operation performs the task that is similar to logical indexing in
default R. Now we can answer questions like ‘which continent had the highest/lowest GDP per capita in year

9287.
10174.
.732
26938.

21711

677
090

778

20027’ or ‘which country had the highest life expectancy in year 19977’

> Y2002GDPByConti [which.max (Y2002GDPByConti$meanGDP),]
local data frame
continent [1]

Source:
Groups:

1

continent
(fctr) (
Oceania

year
int)
2002

[1 x 3]

meanGDP
(dbl)

26938.

78

Similarly, for the lowest GDP per capita we can use which.min().

1.4 mutate()

Appending a new column with, for example, log value of GDP per capita is also possible.

append one or more new columns to a data frame we use mutate ()

> LogGDPByContiByYear =
mutate (logGDP=log(meanGDP))
> LogGDPByContiByYear

+

GDPByContiByYear %>%

Source: local data frame [60 x 4]
Groups: continent [5]
continent year meanGDP logGDP
(fctr) (int) (dbl) (dbl)
1 Africa 1952 1252.572 7.132955
2 Africa 1957 1385.236 7.233626
3 Africa 1962 1598.079 7.376557
4 Africa 1967 2050.364 7.625773
5 Africa 1972 2339.616 7.757742
6 Africa 1977 2585.939 7.857844
7 Africa 1982 2481.593 7.816656
8 Africa 1987 2282.669 7.733101
9 Africa 1992 2281.810 7.732724
1 Africa 1997 2378.760 7.774334

Let us generate a histogram for logged GDP per capita per country in year 2002.

>
+
+
>

Y2002LogGDP

= data %>%

mutate (logGDP=1og (gdpPercap))

filter (year==2002)

hist (Y2002LogGDP$1ogGDP)

The resulting histogram is fig.

1.5 Practice

Problem 1. Which country had the highest life expectancy in 2002 and what was the value of it?

h>h

Problem 2. Which continent had the lowest GDP per capita in 19677

Problem 3. How does the distribution of GDP per capita look like in 19677

To compute and

Frequency

20

15

10

Histogram of Y2002LogGDP$logGDP

Y¥2002LogGDP$logGDP

Figure 2: Logged GDP in 2002

	Dplyr
	Sanity Check
	group_by() and summarize()
	filter()
	mutate()
	Practice

